חAmIBIA UחIVERSITY
OF SCIEПCE AПD TECHחOLOGY
FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE HONOURS	
QUALIFICATION CODE: 08BOSH	LEVEL: 8
COURSE CODE: BBC811S	COURSE NAME: BIOINORGANIC AND BIOPHYSICAL CHEMISTRY
SESSION: JUNE 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR. EUODIA HESS
MODERATOR:	DR. LIKIUS DANIEL

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly
4. All written work must be done in blue or black ink and sketches can be done in pencil
5. No books, notes and other additional aids are allowed

PERMISSABLE MATERIALS
Non-programmable calculators

ATTACHMENTS

1. List of useful constants
2. Periodic Table

THIS QUESTION PAPER CONSISTS OF 5 PAGES (Including this front page, list of useful constants and Periodic Table)

QUESTION 1:

List the general characteristics of Hard, Intermediate and Soft Ligands along with the classification of metal ions and ligands of importance in biological inorganic chemistry.

QUESTION 2:

a) Why is chelation important in medicine?
b) Why are corrins and pophyrins regarded as an important class of natural chelator molecules?

QUESTION 3:

a) Which of the 20 amino acids are potential metal ligands?
b) Which of the low molecular weight inorganic anions bind to Fe^{3+} in proteins?
c) Which metals are inserted into the tetrapyrrole nucleus of corrins and porphyrins to form vitamin B_{12} and other cobalamine cofactors, haem, chlorophyll and coenzyme F_{430} respectively?

QUESTION 4:

What is the difference between catabolism and anabolism processes? Include equations in your answer.

QUESTION 5:

Name the five methods used to study metals in biological systems and include which metals they detect.

SECTION B:

QUESTION 1:

a) Distinguish briefly between the terms condensation polymerisation and addition polymerisation.
b) Draw the structure of the missing compound in the following polymerisation reactions ($\mathrm{A}-\mathrm{C}$) and state whether the resulting polymer is a condensation polymer or addition polymer.

B		+		\rightarrow	(iii)

c) What is the number average degree of polymerisation (DP) of each of the following?
(i) Polyvinyl alcohol (PVA) with number-average molecular weight of 150000.

Monomer
(ii) Poly(benzyl methacrylate) with number-average molecular weight of 100000.

d) Considering the following water treatment Moringa oleifera seed biopolymer size fractions of a given sample:

Fraction	Number of Chains, N_{i}	Molecular Weight, M_{i}
1	500	5,000
2	100	10,000
3	3	$1,000,000$

i) Calculate the number-average molecular weight ($\overline{\mathrm{M}}_{n}$), weight-average molecular weight ($\overline{\mathrm{M}}_{\mathrm{w}}$) and z -average molecular weight ($\overline{\mathrm{M}}_{\mathrm{z}}$) of the polymer.
ii) Which average molecular weight did the 3 chains of the molecular weight 1,000,000 most significantly affect and why?
iii) Calculate the polydispersity index (PDI) and comment on the result.
iv) Comment the relative magnitudes of the molecular weights, i.e. $\overline{\mathrm{M}}_{\mathrm{n}}, \overline{\mathrm{M}}_{\mathrm{w}}$ and $\overline{\mathrm{M}}_{\mathrm{z}}$.

The enthalpy of melting of ice at 1 bar is $6.007 \mathrm{~kJ} / \mathrm{mol}$; the density of water at $0^{\circ} \mathrm{C}$ is $999.9 \mathrm{~kg} / \mathrm{m}^{3}$, while that of ice is $915.0 \mathrm{~kg} / \mathrm{m}^{3}$. Assuming $\Delta_{\text {fus }} V_{m}$ and $\Delta_{\text {fus }} H_{m}$ are constant, determine the freezing point of water at 100 bar.

QUESTION 3:

a) Determine the diffusion coefficient of for $\operatorname{Ar}\left(\sigma=3.6 \times 10^{-19} \mathrm{~m}^{2}\right)$ at 298 K and a pressure of 1.00 atm .
b) Under identical temperature and pressure conditions, the diffusion coefficient of He is four times larger than that of Ar. Determine the ratio of the collisional cross-sections.

USEFUL CONSTANTS:

Gas constant, $\mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.083145 \mathrm{dm}^{3} \cdot \mathrm{bar} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}=0.08206 \mathrm{~L}$ atm mol ${ }^{-1} \cdot \mathrm{~K}^{-1}$
$1 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=1 \mathrm{kPa} \cdot \mathrm{L}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}$

1 atm $=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr
Avogadro's Number, $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$
Speed of light, $\mathrm{c}=2.998 \times 10^{8} \mathrm{~ms}^{-1}$
PERIODIC TABLE OF THE ELEMENTS

$\begin{array}{\|c\|} \hline 57 \\ \mathrm{La} \\ 138.906 \end{array}$	58 Ce 140.12	$\begin{gathered} \mathbf{5 9} \\ \mathbf{P r} \\ 140.908 \end{gathered}$	$\begin{array}{\|c\|} \hline 60 \\ \text { Nd } \\ 144.24 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 61 \\ \mathbf{P m} \\ (145) \\ \hline \end{array}$	$\begin{gathered} 62 \\ \begin{array}{c} 62 \\ \text { Sm } \\ \hline \end{array}{ }^{2} 0.36 \\ \hline \end{gathered}$	$\begin{array}{\|c} \mathbf{E u} \\ 151.96 \\ \hline \end{array}$	$\begin{gathered} \hline 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \mathrm{~Tb} \\ 158.925 \end{gathered}$	$\begin{gathered} 66 \\ \mathbf{D y} \\ 162.50 \end{gathered}$	$\begin{array}{\|c\|} \hline 67 \\ \text { Ho } \\ 161.930 \end{array}$	$\begin{array}{\|c\|} \hline 68 \\ \mathbf{E r} \\ 167.26 \\ \hline \end{array}$	$\begin{gathered} 69 \\ \mathrm{Tm} \\ 166.934 \end{gathered}$	$\underset{173.04}{\mathbf{Y}}$
89	90	91	92	93	94	95	96	97	98	99	100	101	2
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
. 02	2.03	1.0	238.029	27048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(25	

Lanthanides:

Page 5 of 5

